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SUMMARY 
A fully coupled method for the solution of incompressible Navier-Stokes equations is investigated here. 
It  uses a fully implicit time discretization of momentum equations, the standard linearization of convective 
terms, a cell-centred colocated grid approach and a block-nanodiagonal structure of the matrix of nodal 
unknowns. The Method is specific in the interpolation used for the flux reconstruction problem, in the 
basis iterative method for the fully coupled system and in the acceleration means that control the global 
efficiency of the procedure. The performance of the method is discussed using lid-driven cavity problems, 
both for two and three-dimensionai geometries, for steady and unsteady flows. 
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1. INTRODUCTION 

The main limitations of present Navier-Stokes calculations of three-dimensional incompressible 
viscous flows lie primarily in the lack of grid resolution of results and subsidiarily in the 
difficulties associated with turbulence modelling. While the latter problem is not discussed here, 
the former is often connected to the lack of robustness of the solvers used in that the covergence 
slows down on fine grids, forbidding a grid-independent rate of convergence. 

The difficulty in obtaining a solution of incompressible flow equations results from the lack 
of a pressure time derivative term in the continuity equation. Several methods have been 
suggested to  overcome this problem and they can be distinguished by the way the incompress- 
ibility constraint is enforced. Apart from methods such as the pseudocompressibility method in 
which the pressure-velocity coupling is simulated with a suitable modification of the continuity 
equation, the most commonly used methods follow the so-called segregated or Poisson pressure 
equation approach. In this approach the pressure-velocity coupling is solved iteratively, success- 
ively updating the velocity variables in the momentum equations and the pressure in a pressure 
equation, in such a way that solenoidality is satisfied at convergence. The updating procedure 
is then handled by the well-known ‘SIMPLE’ or ‘SIMPLER’ methods’ or by the ‘PISO’ 
method.2 Efforts to improving the robustness of the pressure solver, which is the key part of 
the method in that it partly controls its convergence rate, bring significant benefits for the overall 
p r o c e d ~ r e . ~  The reason is that the increased stiffness of the three-dimensional pressure matrix 
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is the most immediate consequence of an increased grid clustering. However, the main drawback 
of all these methods, where the pressure-velocity coupling is not enforced at  each iteration 
through the solution of the linearized system, lies in the slowingdown of convergence when the 
number of grid points increases or when the clustering ratios over curvilinear grids increase. 

In the following we only consider the so-called fully coupled methob where the momentum 
equations and the continuity equation are solved simultaneously. The first attempt to solve the 
momentum equations and the continuity equation in a coupled way was the so-called ‘SIVA’ 
algorithm.* More recent methods follow the boundary layer practice in which the flow domain 
is swept from upstream to downstream, implicit differencing of momentum being used for 
marching stability. Upstream influence through the pressure field has to be accounted for; this 
is done by introducing some form of forward differencing for the streamwise pressure gradient 
which allows departure-free behaviour. Such methods have been developed mainly in the 
framework of the partially parabolic approximation, for instance in Reference 5. 

Unfortunately, in References 4 and 5 the coupling between dependent variables is performed 
only in small subdomains (a cell volume or cells with the same given longitudinal station and 
girth). In such cases the resulting matrices are easy to handle but poor convergence rates are 
obtained, especially on fine grids, because of the weak coupling between subdomains. The 
situation can be improved in some respects with multigrid methods:.’ although the fully coupled 
approach in itself‘ does not appear to bring significant improvements with respect to standard 
Poisson-based 

It appears therefore that the coupling between the solenoidal velocity field and the pressure 
has to be performed over the whole domain, in spite of the increased complexity of the algebraic 
system. Velocity and pressure fields are then simultaneously updated in a linear sense, iterations 
being performed only to solve for the non-linearity. In contrast with References 6 and 7, where 
the continuity equation is retained in its primitive form, the present work follows References 10 
and 11 in the use of an approximate Poisson equation, but it departs from References 10 and 
1 I in the choice of coupled dependent variables as well as in the selected iterative method. Other 
possibilities include the use of a penalty relation as in Reference 12, following a classical practice 
of finite element techniques. The fully coupled system can be solved by two different methods. 
The most common is to use direct solvers such as Gaussian elimination” or YSMP,13 which 
incorporates an efficient LU decomposition, as in References 12 and 14-16. However, direct 
solvers lead to strong storage limitations which forbid their use in three-dimensional problems. 
Another possibility is to use ad hoc CG-like solvers as in Reference 16 and the present work. 

Another important aspect of the present work is the proposal of a new discretization scheme. 
For most practical flow calculations, first-order upwind or skew upwind schemes are not 
considered to be accurate enough. Schemes higher than second-order are difficult to apply on 
a curvilinear co-ordinate system. Thus second-order schemes offer a good compromise. Because 
centred schemes become unstable when the cell Reynolds number is increased, high-order upwind 
schemes are often preferred. However, they share the drawback that at  least two nodes are 
involved in the upwind direction. This makes convergence more difficult in recirculation zones. 
Also, their accuracy becomes questionable on a curvilinear grid system. In the following we 
propose to use the CPI (‘consistent physical interpolation’) approach, which ensures second- 
order accuracy. The resulting scheme has a nine- or 19-point stencil for two- or three-dimensional 
problems respectively; moreover, it remains stable for high cell Reynolds numbers. 

The paper is arranged as follows. The ingredients of the numerical discretization are detailed 
in Section 2. Since a cell-centred collocated grid approach is used, the most important aspect 
of the numerics lies in the flux reconstruction problem, which consists of expressing the mass 
fluxes with respect to nodal unknowns so as to avoid spurious pressure modes (Sections 2.2-2.5). 
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Other significant aspects include the basis iterative method used for the fully coupled system 
(Section 3) and conjugate gradient means to accelerate the convergence (Section 3.2). Numerical 
results (Section 4) concerning the accuracy (Section 4.1) and the efficiency of the method (Section 
4.2) provide the information needed to establish constraints for the simulation of a difficult 
unsteady problem, namely the flow of a viscous fluid in a 3: 1 : 1 three-dimensional cavity, driven 
by its sliding upper wall, at  a Reynolds number of 3200 (Section 5). This example is used to 
demonstrate that the limitations of the method stem only from physical reasons. 

2. THE NUMERICAL APPROACH 

2.1. Master equations 

The governing equations are the unsteady Navier-Stokes equations 

au 1 
at Re 

v * u = o ,  - + v-uu = -vp + - VZU, 

with the boundary conditions 

U = i for y = 1, where i is the unit vector along the x-axis, (2a) 

U = 0 on other sides or faces of the cavity, (2b) 

and the initial condition 

Equations (1) with boundary and initial conditions (2) are solved in the primitive variable 
convective formulation on a cell-centred collocated grid. A three-level second-order backward 
Euler scheme is chosen for time discretization: 

where the iterative index v,  for which the solution at  actual time t r + l  is calculated, is omitted. A 
second-order time-accurate scheme has been found necessary for the simulation of unsteady 
problems; however, only a standard first-order time-accurate one-step backward Euler method 
is used for the solution of the steady equations. 

Spatial derivatives are treated implicitly by using a central difference scheme on a cell-centred 
collocated grid around point {xi, y,, z k } .  They involve velocity and pressure unknowns at points 
indexed with integer values of i , j ,  k (Figure l(a)) which are the centres of the control volumes. 
However, first-order derivatives of the velocity field in (3) require intermediate values (fluxes) to 
be defined at  faces of the control volume 



608 G. B. DENG ET AL 

Figure l(a). Cellantred three-dimensional collocated grid: 0,  locations of unknowns P, U, V,  W (U, V,  W are Cartesian 
velocity components, 0, locations where fluxes are required 

control volume for mass and momentum quations 
at point C 

Active zw for the reconstruction of fluxes at point e. 

Figure I(b). Cellcentred two-dimensional collocated grid: influence stencil of point e and notations for the CPI closure 
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Contml volume for niass and mOmeNum quaiions 
at point C 

Active zone for the reconstruction of fluxes at point e. 

Figure I(c). Rhie and Chow's influence stencil of point e 

Control volume for mass and momentum equations 
at point C 

Active zone for the reconstruction of fluxes along 
c-nc and n-nc. 

Figure I(d). Schneider and Raw's influence stencil of point e 

Thus on a uniform grid of steps H , ,  H y ,  H , ,  the continuity equation is discretized in the 
form 

, (4a) &I/Z.jj- u i - l / Z . j $  + h. /+1/2.h - h,j-112.k + K.i.k+112 - W . j . h - 1 3  = o  
Hx HY Hz 

where U ,  r! W denote the Cartesian components of the velocity vector U. 
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According to (3b). the momentum equation is discretized with the centred conservative scheme 

where unsteady, advection and diffusion terms are taken as 

U n + l . v - l  n + l  v - 1  A(U),. j.k = __. I +  1 / 2 . , , k U I +  l / Z , j , k  - ~. U i -  l / b . j . k u i -  l / Z , j , k  

H X  

yn+ 1 . v -  1 n + l  v - 1  
i . j + l / Z . k U i . j +  1 / 2 . k  - y i . j - * l / 2 , k u i . j -  1 / 2 . k  +- 

HY 

H z  

wn + 1, v-  1 n + l  v - 1  
1. j . k +  112 ui, j . k +  112 - wi, 1.k- 1 / 2  u i q  j , k  - 112 + , 

( V q J ) .  . =-- u i + l . j , k  -k u i - 1 , j . k  - 2u,, j .k + u i . j + l , k  + u i . j - l . k  - 2ui. j .k 

H: H,' 
i . j ,k 

ui. j .k+ 1 + ui,].k- I - 2ua + 
H,2 

The superscript'"' corresponding to the actual values of U at time t"+ I and for the unknown 
iteration v is omitted. A,, A,, A, are the Cartesian components of the advective term A. 

The success of the numerical approach depends on the way the numerical fluxes Ui, j,r. 
Vi+,,2.j,k, Wi.j.kfl,2 in the continuity equation (4a) and in the momentum equation (4b) are 
interpolated. How these auxiliary unknowns are expressed with respect to the nodal unknowns 
(in order to be eliminated) will be considered in Section 2.2 for the two-dimensional case (Figure 
W ) .  

2.2. The flux closure problem 

The interpolation approach needs to be at least second-order accurate to preserve the accuracy 
of the second-order centred difference scheme (4). Conventional closure methods are based on 
Taylor series expansions. An integration point value, say u, = U i +  l/2.j, is expressed only in 
terms of dependent variables of the same family. In other words, u, is a function of { Uij), the 
set of nodal values for the U-velocity component, but it depends neither on { Kj} nor on {Pi,}. 
Although upwinding interpolation formulae can be used to enhance stability, spurious pressure 
models exist when collocated grids are used for such interpolation formulae. Such difficulties 
are circumvented by using a physical interpolation approach in which a velocity integration 
point value u, is expressed not only in terms of the set of dependent variables { Uij} but also in 
terms of other physical quantities { 6,) and {Pi,). 
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Rhie and Chow's approach" is the most often used (see e.g. References 17-19). In this 
approach u, is interpolated by using the two discretized U-momentum equations at C and at  
E (Figure l(c)). For two-dimensional problems (on orthogonal as well as on non-orthogonal 
grids) it will be seen that the interpolation" connects each flux to 12 velocity points, so that 
the continuity equation involves 20 velocity neighbours of point C where the equations (1) are 
discretized. The alternative used here is to change the interpolation method in order to minimize 
the number of nodal points required for the flux closure. 

In Schneider and Raw's approach" the control volume V, surrounding node C is defined as 
the assembly of four control subvolumes V,,, V,,, V,,, V,, (Figure l(d)), each of which has two 
faces which belong to aVc. For instance, the faces of V,, which belong to aV, are n-ne and e-ne. 
The conservative form of the momentum equations is written on each control subvolume. One 
is left with the evaluation of fluxes over eight subfaces defining dV, at the reference points 
located at the middle of each segment, such as n-ne and e-ne, defining dV,. Hence closure is 
required to eliminate the reference to integration point pressures and for the velocity components. 
Schneider and Raw write a convective form of the momentum equation from which the 
integration point values are determined in terms of nodal values of the dependent variables; 
hence the pressure gradients at points such as nne and ene are obtained from a bilinear inter- 
polation involving nodal pressure values at points C, E, NE, NW. In a similar way the diffusion 
operator at nne and ene involves the nodal velocity values at the same points. Finally the 
convection operator (written along the streamline) is discretized using locally skewed upwinding. 

Such an approach involves three technical drawbacks. (i) On assembly of the various operator 
approximations into the momentum closure equation, there will result four equations involving 
the four integration point variables and the nodal values of the dependent variables. Each of 
these equations may reference more than one integration point variable and consequently a 
coupled system of equations involving the integration point variables with respect to the nodal 
variables. Hence a 4 x 4 inversion is performed to determine the integration point variables in 
erms of nodal values only. For the sake of simplicity an explicit formula for integration point 
values in terms of nodal values would be preferable. (ii) Although the additional cost required 
to perform the inversion scales linearly with the number of elements, it is evident that this 
procedure is too complex for a three-dimensional extension to be straightforward. (iii) There is 
an accuracy problem for the diffusion operator at  integration point values, since with only four 
nodal values and the integration point itself, it cannot be made first-order. 

Being inspired by Reference 20, the present approach, while more robust than Rhie and 
Chow's, corrects the three aforementioned drawbacks in a way which is best explained on the 
following 2D case. We consider for instance the interpolation of u, as required by (5).  We seek 
an expression of u, in terms of the nodal unknowns. With such a stencil the closure of u, will 
be more compact than that obtained with Rhie and Chow's method, which involves for u,, 
besides, P,, P,,  UN, LINE, Uc,UE, U s ,  USE, the values U E N E ,  U s , ,  UEE (Figure l(c)). Once un- 
knowns such as u, are eliminated, the molecule for the mass and momentum equations involves 
the standard nine points for the pressure (five points only for a Cartesian co-ordinate system) but 
21 points for the velocity. It is of course possible to deal with such a large stencil, retaining the 
pseudovelocity components as primary dependent variables. In two dimensions the algebraic 
problem then involves a 5 x 5 block nine-diagonal matrix, with a resulting important storage 
penalty (see Reference 19 for an analysis of this method in the two- and threedimensional cases). 

In contrast, the mass and momentum molecules resulting from the present method, like 
Reference 20, involve only the standard nine points for the pressure (five points in the Cartesian 
case) as well as for the velocity components. The closure for u,, u., u,, u, is derived by writing 
a discretized U-momentum equation at points e, n, w, s respectively. Similarly the closure for 
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u,, u,, uw,  u, is derived by writing a discrete V-momentum equation at the same corresponding 
points. The corresponding discrete schemes need not be the same as those written at  point C 
to determine the dependent variables; here we use the convective form of the momentum 
equation and hence for u at points e, n, w, s: 

au au au aP I a2u a2u 
dt ax ay ax Re (s + % y i ) = o *  

4 U ) = - - + U  + v -  + - - -  

At point e equation (6) is discretized by using a finite difference method on the seven points N, 
C, S, e, NE, E, SE related to the slightly shaded region in Figure I(b), where spacings are 
H, = 2hx, Hy = 2h,. Central difference schemes are used for the pressure gradient and for the 
diffusion terms, while convective terms are approximated using a first-order upwind scheme in 
order to ensure stability. The unsteady term is taken second-order in time using a two-level 
Euler backward scheme 

3u, - 4< + < - I  + uc I x c  - UE - u, + 2u, - - U S E  UNE + UN - 214, + 0,- 
2HY 2HY 

- .~ + uc + u ,  - + 0, 
2Ar h X  h x  

where convection velocities are known from the previous iteration: 

+ l u : + l * v - l  I ). u, = due I u: + - 111 
.,+ = &;+ 1 . v -  1 

v: = 2(u, + 10, 1 1 9  0, = z(u, 14' I I ). 

- 1 n + l . v - l -  

- I n +  1 . v - 1  - 1 n t  1 . v - l  n + l . v - l  

Similarly the V-momentum equation fixes u, according to 

VNE - 2VE + k& VN - 2vc + Vs VE - 20, + VC - +  + 2 - - -  
H,' h: 

+ P ,  + PNE - Ps - PSE = - -. -. -~ 
4HY 2Re 

(7b) 

The closure interpolation formulae are easily derived from (7). The result specifies u, linearly 
with respect to U N B  and P N B  ( N E  = N, C, S, NE, E, SE). It can be written as 

In (9a,c) ge is known from previous time steps. The summation over N E  (neighbouring nodes) 
involves node C plus at most three modes among N, S, E, W, plus at  most two nodes among 
NE, NW, SE, SW. The influence coefficients satisfy also in the steady case 

C C N B  = 1, 
N B  
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indicating that variables lie and 8, are interpolations from neighbouring nodal values of U and 
V respectively. This is verified from the values of the non-vanishing influence coefficients in (9a.c) 
which are given in Appendix I. In contrast with Reference 20 where 4 x 4 linear systems are 
solved for integration point values, the present closures are explicit. Consequently they lead to 
straightforward extensions to three-dimensional problems (Section 4) as well as to curvilinear 
grids, as realized also for more practical situations treated for instance in Reference 19. 

Although a spatially first-order scheme is used, the closure interpolation for u, which results 
from (7) is at least second-order accurate: on a uniform grid with, say, positive components of 
the advection velocity U'(U- = 0). the truncation error for ( 5 )  is estimated as 0; 'Wx, y), where 
0;' and O ( x ,  y) are both O(Hx + H,) (see Appendix I). More precisely, for, say, positive 
convection velocities and a uniform spacing H ,  = H, = H in both directions, assuming that 
nodal values are known exactly, the interpolation error can be evaluated at point C. We find 
in the steady case that 

ReH2 ReH3 ReH' d 
u, = u,(Taylor) - - -- L(U)  + (2U + V ) 4 V )  - .  -- (LV) 

8 64 16 ax 

(10) a2u1 aY 
+ !g [4 ax ay + 4 ( E ) 1 +  (211 + 11) 7 ax + 4 v  7 + O(h4). 

d v  av a2 u 

Because U11) = 0 is the momentum equation at point C and 

H ~ U  HWU H V U  
8 axz + 48 (7x3 

u,(Taylor) = U + -. - + -- + o(h4), 
2 dx 

the reconstruction is third-order accurate on a uniform grid. This accuracy cannot be offered 
by the closure of Reference 20 because of its treatment of the diffusion term. Owing to the 
importance of the consistency of the staggered discrete momentum equations (7), this closure 
approach is named the 'consistent physical interpolation' (CPI) approach. Equation (7a)indicates 
that fluxes u, and u, respond to different pressure gradients, (PE - P,)/2h, and (Pc  - PW)/2h, 
respectively, so that the checker-board oscillations can be avoided. 

2.3. Substitution step: pressure equation 

the continuity equation, the result is an equation involving pressure unknowns, 
When ue. expressed by (9a) and corresponding expressions for u,, v, ,  v, are substituted into 

Div - Grad P = Div 91, + fP, (: )Ic 
where Div and Grad are the discrete divergence and gradient operators such that for a 
two-dimensional problem 

(13)  
1 

Div u"- 1,. P - - Div unlC - - 
H ,  HY - A t  2At 

2 * * A *  

u, - u, 0, - 0, Div vlc = - - + -, 
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This pressure equation (which does not result from the discrete divergence of the momentum 
equation) can be used directly as the pressure equation in a decoupled approach to determine 
the pressure field. The resistivity coefficients D and the ‘hat’ fluxes have already been defined 
in Appendix I. Equation (1 1). together with (12) and (13). takes the alternative form (14), where 
the ‘hat’ variables have been eliminated: 

In (14) the summation over NB involves in general the nine neighbouring nodes NE, N, 
NW, E, C, W, SE, S, SW. However, in the case of Cartesian co-ordinates the pressure equation 
involves only the five nodes N, S, E, W, C as indicated by 

(15) K K  = KVw = KtE = K&w = 0. 

The values of the other 19 influence coefficients KP are given in Appendix 11. 

2.4. Substitution step: momentum equations 

and similar equations into (4b). The result can be first written in conservative forms 
The discretized momentum equations can be obtained in a similar way by substituting (9a) 

H H x  = + -L--- Div(Grad U)I, - g;, 
Re 

= + Wx Div(Grad V)I, - g& 
Re 

where the summation over NB is a nine-point (conservative) discrete approximation of the 
pressure gradient. Rather than solving the present momentum system as a Stokes (Laplacian- 
driven) system in which only the pressure terms and the viscous terms are treated implicitly, it 
is possible to eliminate the ‘hat’ variables using the interpolation formulae (9b,d). The result is 

The values of the influence coefficients KFB, Ky’, Ky’ as well as those of g;, g ; , f ” ,  f ”  are given 
also in Appendix 11. Owing to the chosen linearization, it turns out that KyB = KyB. 

2.5. Discussion 

Compared with the original finite element control volume approach,” the present finite 
volume method improves both the accuracy and the matrix conditioning. As already mentioned 
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above, the interpolation formulae (9) are third-order accurate on a uniform grid, although 
convective terms are approximated in (7) by a first-order upwinding scheme. The truncation 
error of the mass and momentum equations has been evaluated for the steady problem on a 
grid of uniform spacing H using MAPLE." It has been found that the first differential 
approximation of the continuity equation at  point C is 

>I a 2  

Re ax2 aY 

a 
JY 

. . + .- - u - (u, + ur) + u - (u, + Ur) - - - (u, + v$ + - j  (u, + or) + 1 0  ax aU a y  a" H Z  8 [ ax 

This indicates that the CPI method is second-order accurate for the mass conservation: the 
leading term of the truncation error is 

The first differential approximation of the linearized x-momentum equation LU = 0 at point C is 

so that the leading term of the truncation error is 

The first differential approximation of the non-linear x-momentum equation LU = 0 at point C is 

so that the leading term of the truncation error a t  point C is 

H Z  a4u a4u -- - 
12Re (dx4  + dyl) 
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R N 

Consequently the CPI scheme for the momentum equation is second-order accurate on a uniform 
grid. The corresponding expressions for the y-component momentum equation are obtained by 
a simultaneous permutation of U and V of x and y. 

Another important aspect of the CPI approach is related to matrix conditioning. If the grid 
is orthogonal, it has already been mentioned that the pressure equation (14) involves a five-point 
stencil for the pressure. Since D is positive, the corresponding pressure matrix is weakly 
diagonally dominant and is irreducible. Consequently the convergence of conventional iterative 
relaxation methods i s  guaranteed for the pressure system (as for Rhie and Chow's method). 

Although the CPI scheme builds in an automatic upwinding and hence correct limit 
behaviours for large and small values of Re, the positivity of the velocity part of the matrix 
(coefficients Kf', K;;) is not guaranteed. Hence the CPI scheme may be prone to a cell Reynolds 
number limitation. This lack of monotonicity remains, however, rather weak and this probably 
explains the absence of practical difficulties in getting solutions for high values of Re (see Section 
4). 

Upwinding also applies in the momentum equation both to the convective terms and to the 
pressure gradient terms through the physical flux interpolation. While such a situation has been 
analysed in detail on a one-dimensional example,zo*z2 its illustration is presented now for the 
two-dimensional Navier-Stokes equations. Figure 2 indicates significant values of the influence 
coefficients at  a high value of the Reynolds number for a typical nine-point stencil. The arrow 
indicates the direction of the convection velocity (u& u:). We can see that both the convection 
terms and the pressure gradient are significantly upwinded, while the influence coefficients at 
nodal points around C are not all positive. 

2.6. Pressure boundary conditions 

A cell-centred grid is preferred in the present study since it appears to make the implementation 
of pressure boundary conditions easier. On a boundary cell the numerical fluxes at inner faces 
F,, F, and F, are determined by the CPI approach in the same way as for any standard point. 
The numerical flux at the boundary face F, is specified directly from the velocity boundary 
conditions. The resulting pressure equation does not need any additional boundary condition 
for its resolution in so far as boundary cells are orthogonal at the boundaries. The pressure 
gradient required for the momentum equations can be calculated in a forward/backward way 
or by using extrapolated boundary pressure values, which are also used as numerical pressure 
boundary conditions in the case of a non-orthogonal grid. 
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3. THE RESOLUTION APPROACH 

3. I. The fully coupled approach 
Using the previously described method leads to a linearized fully coupled system consisting 

of equations (17a), (17b) and (14) written at each inner point C(i,,ii in the computational space. 
It has to be solved at each time step t n +  for each iteration v, velocity and pressure fields being 
updated simultaneously to account for the non-linearity. 

We group the three unknowns U ,  V;  P at each grid point (i, j )  to define the three-component 
vector X(i, j) = ( 1  U ,  V;  PllT and we order the unknowns from values i = 1 to i,,, and for any 
given value of i from j = 1 to jmx. When the iu - l)th, ijth and i u  + 1)th rows of the matrix A 
corresponding to (16a), (16b) and (13) are also grouped in this order, the matrix A appears as 
a 3 x 3 block nine-diagonal matrix whose non-vanishing elements in the ijth 3 x 3 block row 
located on the (i - 1)(j - l)th, ( i  - l)th, (i - l)(j + 1)th columns (influence coefficients of points 
SW(i, j ) ,  W(i, j), NE& j) respectively), the i(j-l)th, ijth, i(j + 1)th columns (influence coefficients of 
points !3(i,j), C(i , j ) ,  N ( i , j )  respectively) and the ( i  + l)(j - l)th, ( i  - lbth, ( i  + 1)(j + 1)th col- 
umns (influence coefficients of points Sqi,  j), E(i, j), NE(i ,  j )  respectively). Appendix 111 presents 
the resulting matrix A and the detailed structure of a characteristic elementary block; this 
demonstrates the optimal compactness of the CPI method with respect to Reference 11. The 
algebraic fully coupled system AX = b is thus written symbolically as 

Owing to the collocative character of the approach, the construction of block iterative methods 
for (20) is made technically easier than if a staggered grid approach were used. With a 
preconditioning matrix M and the residual matrix N(A = M - N )  the basis iterative method 
can be written as 

(21) 

and its efficiency as a means to solve (20) depends on the choice of M. A block point Jacobi 
method M = diag(A) = 1 1 . .  . 0 .. . A,. . . 0 .. . )I is a vectorizable preconditioner which only needs 
the inversion of the 3 x 3 submatrix coefficients at point C, consisting of the 3 x 3 block of 
influence coefficients at  point C(i, j ) .  Other blockpoint iterative methods (SOR, Zebra) can be 
as easily applied. Block line iterative methods retain the 3 x 3 block tridiagonal matrices 
11.. . O  . . . Aw, A,, A,. . . O . .  . 11 or 11 . . . 0 . .  . A,, A,-, AN.. . O . .  .I1 of discrete points along an 
x-line (W, C, E) or y-line (S, C, N). M is then efficiently solved using a block version of the 
Thomas algorithm. However, such methods in 3D require 81 working matrices in order to store 
the factorizations and they have been found less efficient than ILU decomposition methods, 
especially when the grid is stretched in more than one direction. 

The block ILU decomposition is such that M = LD-IU, where D is a 3 x 3 block diagonal 
matrix which is determined according to diag A = diag(LD- 'U). The simplest way to construct 
L and U is to take 

X ( k + l )  = M-l(b + NX(k)) 

L =  II ... O...Asw, As,O ... O...Aw, D,O ... O . . .  11. 

U =  11 ... O...O, D,AE ... O...O,AN,ANE...O...II, 

(22a) 

(22b) 

where A,, and ANW have been put to zero in L and U respectively in order to allow the 
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vectorization to be performed along the diagonal line x + y = const." For liddriven cavity 
problems the block diagonal matrix (point Jacobi) is used since it has been found to be the most 
efficient preconditioner on vector computers. In contrast, block ILU preconditioners should 
rather be used on curvilinear grids." 

3.2. Conjugate gradient acceleration 

For elliptic problems the convergence rate of classical basis iterative methods such as Jacobi 
or Gauss-Seidel methods is approximately proportional to N-', N being the number of 
unknowns per direction. When applied to the solution of the linearized algebraic system resulting 
from the discretization of the unsteady or steady incompressible Navier-Stokes equations, the 
behaviour of a block iterative, fully coupled method is about the same. (For segregated methods 
the convergence rate is small with respect to N - 2 . 2 3 )  As a result, the number of iterations 
increases dramatically with the number of grid points. For this reason, convergence acceleration 
is needed for both steady and unsteady flow calculations, especially in the three-dimensional 
case. The conjugate gradient (CG) method has been used because it is independent of grid 
configuration and does not involve any control parameter. Also, our experience indicates that 
the computational effort for the CG method is competitive with that of the multigrid method 
when the number of grid points is not too high (say less than 60 per direction). 

For a non-symmetric linear system the conjugate gradient squared (CGS) algorithmz4 (see 
Appendix IV) is found to be very efficient. However, when applied to a non-linear problem with 
conventional (nowNewton) linearization, the computational effort is prohibitive. This is because 
the CGS method does not satisfy a minimization property so that a non-monotonic decrease in 
the error is found, even for an unsteady simulation where the time step remains small. A variant 
of CGS, the so-called 'BiCGSTAB' a l g ~ r i t h m ' ~  (Appendix IV), is used since it allows a smoother 
convergence and a better efficiency for time-dependent problems. The efficiency of a CG method 
depends on the condition number of the matrix problem. Linearized algebraic equations resulting 
from the discretization of the Navier-Stokes equations are usually ill-conditioned, especially 
when large grid aspect ratios are used. Preconditioning is then needed and, as mentioned above, 
a block diagonal Jacobi preconditioner is used. 

3.3. Defect correction approach 

The convergence of the resulting algebraic system has been found to be slow when the 
Reynolds number is increased, where flow recirculation exists. Then the flow may have opposite 
convective directions on some control volumes, as shown in Figure yb). With a large cell 
Reynolds number the diagonal term may lose its dominance. As a result, the condition number 
of the matrix increases considerably. The resulting threedimensional linearized system cannot 
be solved even with a block ILU preconditioner. An alternative defect correction approach is 
adopted here, since the diagonal dominance of the momentum equations can always be ensured, 
using a positive scheme to discretize the convective form of the transport equations. The principle 
of the method is as follows. Let L ,  U = b be the discrete problem to be solved using the previously 
described CPI method. A defect correction approach is written for the momentum equations as 

L2U('+') = L2U(') + b - LIU("), n = 1.2.3,. . . , (234 

or 
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(a) (b) 

Figure 3. (a) 'Regular' situation. (b) Need for defect correction approach 

if L, is a linear operator. L,  is the 'explicit' centred discrete operator (4a.b) applied to (3) which 
gives global second-order accuracy. L, is a linear implicit operator which provides convergence 
and is based on 

where the convective transport equations are discretized using the multiexponential scheme" 
(or any other upwind-like positive scheme). Also, since the discretization resulting from the CPI 
approach is retained in (24) for the continuity equation, as in the explicit operator, the mass 
conservation is ensured when the solution is updated. No convergence problem has been found 
so far with this defect correction approach. 

4. RESULTS 

4. I .  Accuracy of the CPI method 

The classical 2D square driven cavity problem 0 < x < 1.0 < y < 1 with V(x,  1) = 1 is used 
to qualify the accuracy of the CPI approach (Figure 4, right). Tables I and I1 compare with 
reference resultsz6 significant values of minimal and maximal centreline velocities at Re = 400 
and lo00 respectively. Calculations have been performed on three different uniform grids from 
which the error has been estimated as well as the presumed order of accuracy of the present 
CPI method. The determination of the presumed order of accuracy is based on the argument 
given in Appendix V. Residuals are reduced by more than six orders of magnitude in order to 
get a fully converged solution. The estimated 'exact values' and order of accuracy are given in 
the tables; they confirm the second order of accuracy of the method established by formulae 
(1 8) and (19). 

The accuracy of the present approach compares favourably not only with that of upwind-type 
schemes such as finite analytic," ~niexponential'~ and m~ltiexponentiall~ schemes but also 
with that of a centred scheme, either written on a staggered grid (so as to avoid flux interpolation) 
or using Rhie and Chow's interpolation. This last case was found to converge only for Re = 400. 
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Comer vonex 

0.0 0.5 1.0 

Plane z = 0 

Figure 4. Definitions for liddriven cavity flows 

For Re = loo0 the non-linear iteration procedure diverged, although linear systems were 
correctly solved. Moreover, the improvement with respect to staggered grid results increases 
with the Reynolds number. This demonstrates, if necessary, the controlling influence of the flux 
closure on the global accuracy of the scheme. 

The cubic liddriven cavity flow where the driving face is y = 1 is now considered because it 
provides an interesting benchmark test case for three-dimensional methods. In contrast with its 
two-dimensional counterpart which is the most often used test case, only a limited number of 
steady flow calculations have been performed in the past on the (cubic) 1 : 1 : 1 case, usually for 
low Reynolds numbers (c 1OOO) and a low grid resolution, with finite difference  method^,'^-^^ 
finite elements methods4' or spectral  method^.^' For Reynolds numbers higher than 1OOO the 
physics of this simple geometry is complex and very few numerical solutions are avail- 
able:33*40~42*43 the flow behaviour exhibits significant transverse motions, Taylor-Gortler-like 
(TGL) vortices, end wall vortices and, for a given Reynolds number, stronger unsteady effects 

Table 1. Square driven cavity; Re = 400 
~~ 

Method Grid urnin Vmim vm.x 

'CPI' approach 32 x 32 - 0306 - 0.428 0.283 
'CPI' approach 6 4 x 6 4  - 032368 - 044862 029925 
'CPI' approach 96 x 96 - 0.32653 - 045 163 030183 
'CPI' approach 128 x 128 -032751 - 045274 03027 I 
Estimated 'CPI' exact -0.32873 - 04543 1 030379 
Estimated order of accuracy of CPI - 2.05 - 1.85 - 2.07 

Ghia et 
Centred Rhie and Chow 

129 x 129 
128 x 128 

~~~ ____ 

'CPI' approach 49 x 49 
Centred scheme (staggered grid) 
Finite analytic2' 49 x 49 
Upwind scheme 49 x 49 
Multiexponential schemeI3 49 x 49 
Uniexponential scheme13 49 x 49 

49 x 49 

- 0.3273 - 04499 03020 
- 032603 -045095 0301 19 

-031858 - 044245 029447 
-0.310 - 0.429 0.285 
- 02960 -04051 0.2662 
- 02240 -03462 02101 
- 0.277 1 - 0.3842 0.247 
- 0294 -0406 0264 
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Table 11. Square driven cavity; Re = lo00 

Method 
~ ~ 

Grid Urn," 

Ghia el aLz6 
Bruneau and Jouron' 
'CPI' approach 
'CPI' approach 
'CPI' approach 
Estimated 'CPI' exact 
Estimated order of accuracy 

129 x 129 -03829 
256 x 2% -03764 
6 4 x 6 4  - 0.37436 
96 x 96 -0.38233 
128 x 128 -03851 1 

-0.38867 
- 2.0 1 

~ ~~~~ 

"mi, Vm,, 

-05155 03709 
-05208 03665 
- 0.5 10 15 036364 
-0.5 1947 037109 
-052280 037369 
- 0'52724 0.37702 
- 1.94 - 2.0 1 

Centred scheme (staggered grid) 6 4 x 6 4  -035726 -048858 034556 
Centred scheme (staggered grid) 96 x 96 - 0.3744 1 -050982 0.36271 
Centred scheme (staggered grid) 128 x 128 - 0.38050 -051727 036884 
Estimated centred exact -038855 - 05269O 037705 
Estimated order of accuracy 1.96 1.94 I .w 
Finite analytic2' 129 x 129 - 0.3689 -05037 03553 
Multiexponential scheme' 129 x 129 -03460 - 04858 03330 

than in the 2D case. This situation is unfortunate, since significant numerical experiments cannot 
be realized for the threedimensional case, while Hopf bifurcation, periodicity, period doubling 
and numerical transition to chaos have been observed numerically only in two dimensions, 
owing to the lack of computer resources. 

Figure 5 shows for Re = 100, 400 and 1OO0 the steady velocity profiles obtained in the 
symmetry plane, on the appropriate centrelines, with a 64 x 64 x 32 grid resolution of the (half) 
cubic cavity (32 points along z, with a symmetry condition imposed on the plane z = 0.5). 
Significant threedimensional results on a 64 x 64 grid concerning the flow in the z-symmetry 
plane are presented in Table 111. 

To make evident the global differences from the twodimensional case, the velocity profiles 
in the symmetry plane z = 0.5 are compared with their twodimensional counterparts in a steady 
case for three different Reynolds numbers, namely Re = 400 (Figure 5(a)), Re = 400 (Figure 5(b)), 
Re = loo0 (Figure Yc)). U-velocity profiles are presented along the centreline (x = 0 5 ,  z = 0 5 )  
and V-velocity profiles are presented along the centreline (y = 05, z = 0 5 ) .  They appear less 
steep in the 3D case than in the 2D case because of the global divergence of the flow away from 
the symmetry plane. Symbols '0' indicate the two-dimensional results of Ghia et ~ 1 . ~ ~  while 
2D and 3D pseudospectral results41 are indicated by symbols ' + ' and 'A' respectively. Grid 
dependence is studied for the case Re = 400, where two grids have beem used: 32 x 32 x 16 
( - - - - )  and 64 x 64 x 32 (-). Compared with the results of Reference 41, discrepancies are 
observed mainly on the V profile near the downstream wall, even with the finest grid. This is 
due to the use in Reference 41 of a regularized velocity profile U along the edges of the plane 
y = 1 in order to avoid discontinuous boundary conditions which would destabilize spectral-type 
calculations. Such results also indicate that the grid resolution in the x and y-directions needs 
to be nearly the same in 2D and 3D problems. According to the error estimation used for the 
two-dimensional problem, the relative error (U - UeI.Cl)/Uex.C1 for the CPI method on the 
64 x 64 x 32 grid is about -0.4%. - 1.5% and -4% for Re = 100,400 and loo0 respectively. 
The appropriate grid resolution for the 3D case is thus 'extrapolated' from the 2D case: with 
a 64 x 64 uniform grid good results are obtained for Re = LOO0 (Figure 5(c)) and reasonable 
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X, U'0.5+0.5 

Figure ya). Cubic driven cavity. Re = 100. grid 64 x 64 x 32. Velocity profiles on vertical and horizontal centrelines 
in t-symmetry plane: 0. 2D results;z6 +, 2D results;*' +. 3D m u l ~ s ; ~ '  -, present 2D 'CPI' mults; broken lines, 

present 3D 'CPI' results 

ao 0 5  on 1 .o 

X. U'O.ko.5 

Figure yb, Cubic driven cavity, Re = 400. grid 64 x 64 x 32. Velocity profiks on vertical and horizor antnlina 
in z-symmetry plane: 0, 2D re~ults;'~ +. 2D results;*' A. 3D -, prcscnt 2D and 3D 'CPI' results. grid 
64 x 64 x 32;-.-.-,p.tscnt2D'CPI'resultsfor V,grid32 x 32;...-..present3D'CPI'resultsfor V.gd32 x 32 x 16; 

_ _ _  , present 2D 'CPI' rcsults for U. gnd 32 x 32; ----. present 3D 'CPI' resuhs for U grid 32 x 32 x 16 

0 s  a n  1.0 ao 02S 

X Lp0.54.5 

Figure Yc). Cubic driven cavity. Re = IOOO. g d  64 x 64 x 32. Velocity profiks on vertical and horizontal antdines 
in t-symmetry plam: 0. 2D m ~ l t s ; * ~  +, 2D results;" A, 3D results;4' -, pracnt 2D 'CPI' results; broken lims, 

present 3D 'CPI' mults 
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Table 111 

I 0 0  -0.21488 - 0.24846 0.15228 
400 -0.23302 - 037647 0.20456 
loo0 -0.27152 - 0.4225 1 0.239 12 

. I  .3 .5 .7 .9 
Figure 6. Quare driven cavity, Re = 3200. Velocity profiles on vertical and horizontal centrclina: 0. 2D -. present 'CPI' results. grid 65 x 65 

results are found for Re = 3200 (Figure 6). This information is used to establish the grid 
resolution in Section 5. 

4.2. Eflciency of the fully coupled method for a steady flow calculation 

The efficiency of accelerated fully coupled methods can be discussed from Figure 7, obtained 
for the 2D square driven cavity at Re = 400. The evolution with grid refinement of the 
computational effort cr (CPU time per grid point on VP200) is considered in two cases for which 
a residual reduction of six orders of magnitude is achieved. The increase in cr with the number 
of points N per direction is quicker than N2 for the segregated (PISO-like) methodL3 in which 
the pressure solver is a ILU-PBCG method (although the curve is not drawn for high values of 
N, since this level of convergence is no longer obtained in a reasonable CPU time on a fine 
grid). In contrast, the present fully coupled method gives an asymptotic behaviour cr = O(N), 
also with CG acceleration (CGS method). Present slight departures from the linear trend are 
believed to be due to the defect correction approach and to the CG-like solver. For three- 
dimensional problems the computational effort remains similar: for steady flow calculations on 
a 64 x 64 x 32 grid at  Re = 100 and 400 a residual reduction of four orders of magnitude 
requires 5.3 and 6.7 ms/point on a VP200 respectively. Having established the efficiency of the 
method for steady flow calculations, the investigation of its properties for an unsteady flow 
problem still has to be done. 
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Figure 7. Square driven cavity, Re = 400. Evolution of computational effort with number N of points per direction: 
0, segregated ‘PISO-like method; +, fully coupled ‘CPI’ method; ... 0 ..., fully coupled ILU-PBCG method;” 

-, evolution of CPU time per point with N or N’ (CPU time is on VP200) 

5. THE 3: 1: 1 LID-DRIVEN CAVITY 

5. I .  Presentation; grid spacing 

A numerical simulation of the flow in a 3:l:l (spanwise aspect ratio SAR = 3; see Figure 4) 
driven cavity 0 < x, y < 1, - 1.5 Q z Q 1.5 is now presented. This case is one of those considered 
in the experiments of References 4446 at Re = 3200 and in the (still coarse grid) calculations of 
Reference 42. Short-survival-time Taylor-type toroidal vortices are observed soon after the lid 
is impulsively started. TGL vortices are present (and predicted in References 40, 42 and 43) in 
the fully established state. Finally, turbulence occurs for Reynolds numbers in the range from 
6OOO to 8000. 

The simulation of threedimensional incompressible unsteady flows is made possible with 
reasonable (second-order) time and spatial accuracy on presently available supercomputers. 
However, owing to the still high CPU cost of the method, the unsteady evolution has been 
studied only up to a nondimensional time t = 100 with a 64 x 64 x 64 grid, using a symmetry 
condition (in the plane z = 0). Preliminary calculations on a coarser 50 x 60 x 60 grid indicated 
no spontaneous symmetry breaking, at least for t Q 100. 

5.2. Time step 

An inadequate time step may also lead to erroneous results. Time step limitations may result 
either from numerical (stability) limitations or from physical limitations which canot be avoided 
with an improved numerical approach. The use of an explicit or semi-implicit approach usually 
imposes a (CFL-type) time step limitation depending on the grid spacing. Such a limitation may 
be prohibitive when a fine grid is used. The implicit fully coupled approach does not suffer from 
such a limitation. Nevertheless, a time step limitation still exists owing to the resolution approach 
for the non-linear equations. The defect correction approach and the preconditioned CG solver 
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ITERATDNS 
Figure 8. Three-dimensional cavity, spanwise aspect ratio (SAR) 3: I : I ,  Re = 3200, r = 100. Convergence history of CG 
methods applied to linearized equations. Preconditioning with block diagonal matrix, 50 x 50 x 60 grid. (a) 'CGS' 

algorithm. (b) 'CGSTAB' algorithm 
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allow a large-time-step simulation. However, it has been found that a converged time solution 
could not be obtained with a (non-dimensional) time step greater than 2. This practical limitation 
is believed to be due to physical reasons, since e~perirnents~~ indicate that the developed cavity 
flow is quasi-periodic with a (non-dimensional) period Tapproximately equal to 2 (15 s). 

Owing to the solenoidality constant, the total computational cost increases considerably when 
the time step is decreased. Convergence histories of the linearized equation for four different 

-1.5 -1 25 -1 .o 4.75 4.5 4.25 0.0 

Z 

-- -I I 

(b) -1.5 I -125 -1.0 4.7s 4.5 025 0.0 

Z 

EGENO . 
- + - T J 3  

d-1.1. 

Figure 9. Three-dimensional cavity, spanwise aspect ratio (SARI 3:l:l. Re = 3200. Evolution with time of selected 
velocity profiles u(x. y. z) and v(x, y, t): (a) v(D5,Ol. t) for 18 x 33; (b) V ( M .  01. z) for 37 < r < 51.5 



FULLY COUPLED NAVIER STOKES SOLUTION 627 

time steps (Ar = 100, 10, 1.0.1) at time r = 100 with the 50 x 50 x 60 grid are compared in 
Figure 8(a) for ‘CGS’ and in Figure 8(b) for ‘CGSTAB’. One can notice that ‘CGSTAB’ is more 
efficient than ‘CGS’ when used for timedependent problems. The CPU time to solve the 
linearized system as well as the required number of non-linear iterations (not shown) are reduced 
when the time step is decreased, but not enough to make the total computational time 
independent of the used time step. Consequently, for a fully coupled implicit approach the most 

1 .o 

.7 5 

v! 
2, 

.5 
t 

.25 

0.0 
.75 1 .o 0.0 .25 .5 

X ,U’0.5+. 5 

-1-18 
-1-18 
-4-1-18 
-C 1-18 
--b T-14 
-1-14 
-0-1-12 
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-1-10 - T d  

-0- 1-4 
- 4 - T - 4  
-e- 1-2 
-e- 1-2 

0.0 .25 S .75 1 .o 
x ,U’0.5 *. 5 

Figure 9. Three-dimensional cavity, spanwisc aspect ratio (SAR) 3: 1 : I ,  Re = 3200. Evolution with time of rkcted 
velocity profiles u(x, y. z) and v(x, y. 2): (c) horizontal curves. v(x, 05.0) and vertical curvcs. 1405, y, 0) for 2 6 r 4 20; 

(d) horizontal curvcs. a(x. 05. 0) and vertical curves, ~ ( 0 5 ,  y. 0) for 24 d r Q 48 
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economical time step is the maximum time step allowing a good description of the physical 
events. As indicated previously, the lid-driven cavity flow at Re = 3200 tends to become periodic 
with a period about T = 2. Thus the time step isfixed at At = 0.25 for t c 50 while the initial 
phase ( t  < 50) is described with At = 0 5  in order to save CPU time. The computation has been 
performed on the CRAY2 supercomputer. The reduction factor for the residuals fo the non-linear 
equations is lo3, while the residuals for the corresponding linearized equations are reduced by 
more than four orders of magnitude. The CPU time per point per time step is about 2.4 ms for 

(a) 0.0 25.0 50.0 75.0 m.0 

-0.5,' 
(b) -0.5 -0.25 0.0 0.25 0.5 

X 
Figure 10. Impulsively started three-dimensional lid-driven cavity, spanwise aspect ratio (SAR) 3: 1 : I .  Re = 3200. 
Evolution with time in symmetry plane z = 0 of primary vortex centre: (a) xc and yc as functions of time; trajectory of 

C in symmetry plane 
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2 
Figure I I .  Impulsively started three-dimensional lid-driven cavity, spanwise aspect ratio (SAR) 3:I:l. Re = 3200. 
Contours of x-components of vorticity field in plane x = 0. Pattern with eight or nine pairs of TGL vortices (left, end 

wall; right, symmetry plane): (a) r = 50; (b) r Q 76; (c) I = I00 
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At = 05 and about 1.6 ms for Ar = 0.25. The storage cost of the fully coupled implicit method 
is about 45 Mwords. 

5.3. Results 

To illustrate the Row evolution, four velocity profiIes--o(05,0.1, z, t) and ~ ( 0 5 . 0 1 ,  z,  t) in 
Figures 9(a) and 9(b) and ~ ( 0 . 5 ,  y, 0, r) and o(x, 0.5,0, r) in Figures 9(c) and 9(d)-are presented. 
A peak in the profile u(0.5,01, z, t) indicates the presence of a pair of TGL vortices. The time 
evolution in the symmetry plane z = 0 of the primary vortex centre (x,-, yc), identified by the 
location of the minimum velocity modulus, is presented in Figure 10. The birth of the primary 
vortex quickly follows the impulsive start of the lid. Because of the end wall, a corner vortex is 
formed. For, say, t < 10 the influence of the corner vortex is limited only to a small region close 
to the end wall. Unlike the experimental results where toroidal Taylor vortices were observed 
during the first 30 s (t < 5), no significant three-dimensional effect occurs except near the end 
wall. A simulation performed up to t = 2 with a smaller time step (At = 0 1 )  gives similar results. 
It is unlikely that disagreement between simulation and experiment would be due to insufficient 
time or lack of spatial resolution. The centre of the primary vortex moves approximately along 
the diagonal line during this period (Figure lqb)). 

The corner vortex induces evenly distributed spanwise TGL vortices. The first pair of TGL 
vortices was observed around t = 15; it induces a second pair at about t = 25 (Figure 9(a)). The 
important 3D effect propagates from the end wall, with the TGL vortices from the end wall, 
and a pair of vortices centred at the symmetry plane appears at f z 36 (Figure 9(b)). The Row 
quickly becomes unstable in the whole cavity. The pattern of the first nine distinct pairs of TGL 
vortices is observed at about t = 47 (Figure 9(b)). Afterwards the Row is characterized by a strong 
interaction between the primary vortex, the TGL vortices and the corner vortices. The eight 
pairs that occur predominantly in the experiments of Reference 37 are observed intermittently 
during the simulation (Figure Il(b)), while nine pairs are most often observed, for instance at 
t = 50 (Figure Il(a)) and t = 100 (Figure ll(c)). 

0.0 .25 .5 .75 1 .o 
X ,U'0.5+. 5 

Figure 12. Impulsively started three-dimensional Iid-driven cavity. spanwise aspect ratio (SAR) 3 : l :  I ,  Re = 3200. 
Time-averaged velocity profiles in symmetry plane z = 0 along vertical and horizontal centrelines: -, calculated; 0. 

experimental 
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Although the existence of TGL vortices, as well as the main flow pattern, is expected to depend 
only on the Reynolds number, the end wall plays an important role in main flow development. 
The main flow is already fully developed at r z 25 (Figure 9(d)). However, the system of TGL 
vortices develops as a result of the interaction between the first TGL vortices propagated from 
the end wall and the symmetry vortices formed at t z 36 owing to the zero-flux condition. The 
system of TGL vortices covers the whole domain only at about t z 47 (Figure 9(b)). 

Numerical mean velocity profiles at  the symmetry plane for 50 < r < 100 are compared in 
Figure 12 with experimental results taken in the fully established state with about 5 min sample 
averages (about AT= 43). The u-velocity profile agrees well with experiments. The o-velocity 
profile, however, is strongly influenced by the TGL vortices and is in weaker agreement. This 
is probably due to the sample of numerical simulation data rather than to the grid resolution. 
Finally, it must be mentioned that TGL vortices influence the flow in the symmetry plane with 
a period which is well predicted of about 5-6 non-dimensional time units. 

6. CONCLUSIONS 

The new ‘consistent’ physical interpolation allows the use of a non-staggered grid without 
producing spurious pressure modes, while enforcing numerical stability and second-order 
accuracy. Reliable numerical results have been obtained for the 3D lid-driven cavity with a 
moderate grid resolution. Owing to the influence of the end wall, the TGL vortices develop in 
the present case without any superimposed numerical perturbation. However, the simulation 
has been performed only for one Reynolds number and during a short time (about 10 ‘physical’ 
minutes). This is clearly not sufficient to understand the physical phenomenon in all its aspects, 
particularly its long-time behaviour. The simulation has to be performed over longer times and 
also for a larger range of Reynolds numbers. 

The superiority of the fully coupled method for the iterative calculation of steady flow 
problems has been demonstrated. Five aspects for the superiority. (i) With a fully coupled method 
the iterative procedure accounting for the non-linearity becomes distinct from the problems 
connected to the resolution of the linear system. (ii) For steady flow problems the strength of 
CGS (or CGSTAB) methods provides high rates of convergence and allows quasi-infinite time 
steps as well. (iii) For unsteady flow problems the limitations over the size of the time step arise 
exclusively from the physics of the problem (presence of characteristic periods of unsteadiness); 
this indicates that the domain of efficiency of the fully coupled approach might be limited to 
flows where high-frequency unsteadiness is not too high. (iv) The evolution of the computational 
effort is strongly improved when the number of grid points increases. (v) There is still a serious 
potential for improving the global methods through the use of better preconditioners for the 
coupled system, perhaps by a combination of MG and CG techniques. 

Among the drawbacks of the method, the use of conjugate gradient methods has to be paid 
for by a serious storage penalty: the required two- or three-dimensional arrays for the CG 
method have to be added to the two- or three-dimensional arrays needed to store the fully 
coupled system. It is, however, considered that this storage penalty is a very weak drawback 
with respect to the increased efficiency and robustness of the fully coupled method. 
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APPENDIX 1: CLOSURE RELATIONSHIPS 

We may introduce 

max(u:, 0) max( - u,*, 0) max(u:, 0) max( - u,*, 0) 2 3 D, = - - __- + + +-- +-+- . -  
h X  h X  HY HY Reh; 2At' 

Then the non-vanishing coefficients of (1 3) are 

so that 

u, = lie + B:dP, - PE) + g:, 

with 

As indicated, 12, involves nodes C, N, E, S and NE, SE for CJ and nodes C and E for P. It can 
be noticed that CK + CcE + CrN + CcNE + Cd + CcSE = 1 - 3/2DcAt, SO that the closure 
relationship interpolates between the nodal values. However, the interpolation is not necessarily 
monotonic, since coefficients CcC and CcE may become negative. 

The term u, is obtained in the same way from the convective form of the V-momentum 
equation where the pressure gradient is approximated as 

i.e. 

with 
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where coefficients CeC, CcE,  CcN and Ccs are defined as before, while now 

For the sake of conciseness, similar relations for u and v at points n, w, s are omitted. They 
are easily obtained in the same way as u, and v,. 

APPENDIX 11: INFLUENCE COEFFICIENTS 
Influence coefficients of P in the pressure equation: 

Influence coefficients of U and V in the pressure equation: 

Influence coefficients of P in the V-momentum equation: 

K F  = H,(u.*B:c + U:B;C) + H , ( u : B ~  + vf:BWc), K r  = H,u:B:c, Kg = -H,uCB;c, 
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Influence coefficients of U in the U-momentum equation are identical with corresponding 
influence coefficients of I/ in the I/-momentum equation. The values are 

APPENDIX I11 

The fully-coupled system: the ijth 3 x 3 block row of A such that AX = B is 
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The block diagonal element corresponding to the element X ( i ,  j ) :  

el + K y  0 

Kr KEP 

The block element corresponding to the unknown X ( i , j  + 1): 

The value of other coefficients is obtained by substituting to N other neighbours. The 
right-hand side corresponding to the known vector bdi, j): 

bdkil = llf", I", fpllT(i,il. 

Note: The value of coefficients K and ofP,f" are those given in Appendix 11. 

APPENDIX IV: BiCG, CGS AND BiCGSTAB METHODS 

The most common so-called Krylov subspace method for solving the linear system Ax = b is 
the biconjugate gradient method (BiCG), which constructs non-optimal approximations in 
the so-called Krylov subspace xk E xo + span(rO, ArO, . . . , Ak-'ro) such that the error vector 
8 = xk - x satisfies EL = pk(A)co and fl= pk(A)ro for some polynomial pk of degree k. Here 
f = b - AX', k = 0, . . . , is the residual; pk is determined from the orthogonality condition 

f I (so, Aso, . . . , Ak- 'so), where so = ro, while ? I (ro, Ar', . . . , A'- 'Yo). 

This BiCG method is not optimal in that ]If 11 is not minimized, but it computes xk using two 
three-term recurrence relations for {rk} and {sk}. Hence it is less costly and less storage-consuming 
per iteration than a Krylov subspace method which minimizes the residual. The BiCG method 
terminates within n steps at most (in exact arithmetic) and is coded as follows. 

(1) Start. 
0 Choose xo and so # 0,for instance so = ro, such that s: * ro # 0. 
0 Set po = qo = 0; po = 1. 

(2) For k = 1, 2, . . . do: 
0 Computepk=sl-1.rk-,. 

f l k  = PdPk-1. 
0 pk = rk- , + bkpk- ,-first residual update. 
0 % = s k  - , + - ,-second residual update. 
0 ak = PJq:' Apk- 

xk = xk-1 + akpk. 
(3) Ifxk accurate enough, then quit. 

Else: 
0 rk = rk- 1 - O!kApk (rather than rk = b - AX,). 
0 sk = s k -  1 - &AT%. 

End. 
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S ~ n n e v e l d ~ ~  observed that {rk} and {sk} converge to zero but that only the convergence 
of {Ik} is exploited. He showed that vectors { s k }  need not be solved and multiplication by AT 
can be avoided. Sonneveld has reorganized BiCG, accounting for the fact that one can replace 
&k = pk(A)E0 and f' = pk(A)ro by 

&k = pE(A)Eo and I* = p;(A)ro 

for the same polynomial pk, with no increase in the amount of work per step and with a 
convergence (or divergence) faster than for BiCG by a factor of between one and two. Moreover, 
while BiCG requires vector multiplications by both A and AT, CGS requires only multiplications 
by A as indicated by the following procedure. 

( 1 )  Start. 
Choose xo and so # 0, for instance so = to. 

Set po = q, = 0; po = 1 and compute sE.ro # 0. 

Compute pk = s i -8 - l .  
(2) Fork = I ,  2, ... do: 

P k  = Pk/Pk- I'  

uk = rk + Ptqk- 1. 

Pk = uk + Pk(qk- 1 + P k P k -  1). 

Solve y from M y  = pk. 
0 ak = pk - 1JS: Ay. 

qk = uk - ak Ay. 
Solve z from M z  = uk + qk. 

f' = f'-' - akAz (rather than f' = b - Axk). 
x k -  - x  k - 1  + ak z. 

(3) If xk accurate enough, then quit. 
End. 

It may take far more iteration steps for a true residual process to get at an xk of similar 
accuracy as in the CGS algorithm in the form given: CGS may even converge, while the true 
residual process does not. This is probably because locally large variations in a current update 
direction overshadow variations in other almost converged directions, so that the true residual 
vector does not necessarily satisfy the underlying orthogonality relations for the updated vectors 
Pk(A)ro. Finally, far from converging monotonically, CGS is susceptible to breakdown if 
Pk-1 = 0 at some step. It is in principle possible to avoid exact breakdowns, but we have not 
studied this question since breakdown never occurred in treated problems. 

The CGS procedure as presented involves the preconditioning matrix M = K,K2, so that the 
'primitive' system Ax = b is supplied by Ax = b, where A = K; 'AK; ', x = K; 'x and b = K; 'b. 
In the case of Jacobi (left) preconditioning, K ,  = D (= diag(A)) and K, = I. In the case of an 
incomplete LU preconditioning, K, = L and K2 = U. Instead of solving linear systems based 
on A, one has to solve the 'easier' system M y  = c for c = pk and c = uk + q, for each k during 
the do-loop (2). It is remarkable to notice that K, and K, play no explicit role in the CGS 
procedure and that any of the forms of preconditioning corresponds only with a different choice 
for so in the unpreconditipned system. 

With a slight modification of the aforementioned algorithms, the decrease in residuals can be 
made more regular.2s The resulting procedure (BiCGSTAB) is as follows. 
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(1) Start. 
0 Choose xo and so # 0, for instance so = ro. 
0 Set vo = po = q, = 0; po = a. = wo = 1. 

0 Compute pk = s;*rk- l .  
(2) For k = 1, 2, .. . do: 

b k  = ak - lPk/(Ok - lpk - 1). 
0 pk = r k -  1 + pr(Pk - 1 - mk - 1 v k  - ,)-first residual update. 
0 Solve y from My = P k .  

ak = p& * Ay. 
0 qk = rk- - akAy--second residual update. 
0 Solve z from Mz = q k ,  

wk = [(K;'Az)'.K;'~,]/[(K;'Az)~.K;~Az]. 
0 xk = x k - 1  + aky + WkZ. 

(3) If xk accurate enough, then quit. 

End. 
0 r k  = qk - wkA2 (rather than rk = b - AX&. 

Updates to the current solution are carried out in a single step, while the updates on the 
residuals are done separately. q, is the residual after the BiCG step. A variant of the BiCGSTAB 
algorithm moves the computation of rk in the initialization part into the form cornpule 
p1 = s;.ro z 0 and it includes after the computation of q , P f + l  = -o,$-Aqk.  In contrast 
with CGS, K, is seen to play an explicit role in the preconditioned CGSTAB method. 

Since (Pi(A)so, Q,(A')s, = 0 for j < i ,  BiCGSTAB is a finite method: qN = 0 and wN is 
undefined. Apart from preconditioning, CGS and BiCGSTAB require four additional N-vectors: 
so, po, Apk, Aq, (rk is overwritten by (13- BiCGSTAB requires two images, 12N flops for vector 
updates and four inner products; CGS requires two images, 13N flops for vector updates and 
two inner products. Hence the CPU costs are comparable. Again breakdown (due to wk- = 0 
or p k -  = 0)  never occurred in the cases treated so far. 

APPENDIX V: DETERMINATION OF THE PRESUMED ACCURACY 

According to the Taylor series expansion of a numerical scheme, a numerical solution can be 
approximated by 

(25) 

where U ,  is the computed approximate solution and U,, is the (unknown) exact solution of the 
differential problem. Parameters C and a, the presumed order of accuracy, are constants to 
determine; h is a given available measure of the grid spacing. While all norm spacings are 
equivalent on a uniform grid, they are not on a non-uniform grid. In the latter case h is a local 
measure of the grid at a given point. We suppose that we have computed the numerical solution 
with three grids of grid spacing measures h , ,  h,, h,: 

uh = u,, + Ch", 

Uh, = U,, + Ch!, uh, = u,, + Ch;, Uh, = U,, + Ch:. (26) 

The three unknowns C, a and U,, can be easily determined from (26). The order of accuracy 
a can be obtained iteratively using 

In[A(h /h,)" - A + 13 uh, - uh, 

1n(h3/h 1) U h r  - u h ,  

, where A = a = 
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The constant C results from 
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Hence 

I .  
2. 

3. 
4. 

5. 
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7. 

8. 
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